Russian Journal of Clinical Ophthalmology
ISSN 2311-7729 (Print), 2619-1571 (Online)

The outcomes of residual ametropia correction by LASIK and PRK on pseudophakic eyes depending on IOL model

Open accessCrossrefAntiplagiat

E-libraryDimensions

russian citation indexULRICHS

roaddoaj

ebscoРГБ

CyberleninkaGoogle Scholar

VAK

Scopus

Impact factor - 0,832*

* Impact factor according to the SCIENCE INDEX 2018



DOI: 10.32364/2311-7729-2019-19-2-67-72 Background: multiple studies discuss safety and predictability of laser refractive surgery to correct residual ametropia after IOL implantation. Considering few large comparative studies on ametropia correction by LASIK and photorefractive keratectomy (PRK), we have performed a literature search in Russian and English databases throughout the time of existence of laser refractive surgery (about 20 years).
Aim: to analyze the outcomes of residual ametropia correction by LASIK and PRK on pseudophakic eyes depending on IOL model.
Patients and Methods: 57 patients (77 eyes) after cataract surgery (n=37) or refractive lens exchange (n=40) were enrolled in this prospective open study. 45.6% were women and 54.5% were men. Mean age was 50.8±13.9 years. LASIK (n=70, 91.1%) and PRK (n=7, 8.9%) were performed using standard protocols. Postoperatively, all patients were prescribed with hyaluronic acid-containing eye drops Ocutears®. In most patients (97.5%), target refraction was ±0.25 D. Spherical and aspherical monofocal IOLs were implanted on 38 eyes (group I),multifocal IOLs were implanted on 39 eyes (group II). The groups were similar in all parameters (p>0.05) excepting cylindrical component (-1.45±0.43 D in group I and -0.4±0.29 D in group II, p=0.046). Follow-up was 6 to 9 months.
Results: in group I, uncorrected visual acuity (UCVA) significantly improved from 0.31±0.14 to 0.72±0.22 (p < 0.05). Target refraction ±0.5 D was achieved in 81.6% of patients (n=31). After 6 months, cylindrical component significantly reduced from -1.45±0.43 D to -0.18±0.80 D. In group II, UCVA significantly improved from 0.43±0.17 to 0.80±0.18 (p<0.05). Target refraction was achieved in 82.1% of patients (n=32). Conclusion: residual ametropia after IOL implantation can be corrected by LASIK and PRK. Procedure efficacy in terms of target refraction achievement was independent of IOL model. The differences were demonstrated for cylindrical component only. The rates of target refraction achievement were similar in the groups.

Keywords: pseudophakia, LASIK, PRK, femtoLASIK, correction, residual ametropia, Ocutears.

For citation: Gurmizov E.P., Pershin K.B., Pashinova N.F., Tsygankov A.Yu. The outcomes of residual ametropia correction by LASIK and PRK on pseudophakic eyes depending on IOL model. Russian Journal of Clinical Ophthalmology. 2019;19(2):67–72.

   

Background

Phacoemulsification with intraocular lens (IOL) implantation is one of the most common procedures in eye surgery [1, 2]. In addition to monofocal IOLs, premium IOLs (i.e., aspheric, multifocal, and toric) currently gain popularity. Increased active life expectancy and increased patients’ demands for both distance and near vision in developed countries in part account for this phenomenon. Good uncorrected visual acuity (UCVA) and freedom from glasses are major requirements for cataract surgery. However, many patients are unhappy with their results since they do not achieve target refraction and have poor UCVA [3-5]. In these patients, optimal management strategy is to correct residual refractive errors to achieve desired visual outcomes. This is particularly important for premium IOLs. 

Currently, several approaches are applied in clinical practice to correct residual ametropia after IOL implantation. They can be subdivided into two categories, i.e., corneal and intraocular. Corneal options involve laser in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK). Intraocular options involve piggyback IOL implantation and IOL exchange [6, 7]. Published data on the benefits of LASIK and PRK to correct small spherical and cylindrical refractive errors and piggyback IOL implantation and IOL exchange to correct high spherical refractive errors are available [6-9]. Considering few large comparative studies on ametropia correction after cataract surgery by LASIK and PRK, we have performed a literature search in Russian and English databases throughout the time of existence of laser refractive surgery (about 20 years). There are numerous studies on the safety and predictability of laser refractive surgery to correct residual ametropia after cataract surgery [3, 8, 9-16], refractive lens exchange [17-20], implantation of phakic IOLs [21], and piggyback IOL implantation [22]. Results of the studies on LASIK and PRK for ametropia correction on pseudophakic eyes are listed in Table 1. However, IOL model is not specified in most studies.

Таблица 1. Обзор исследований эффективности LASIK и ФРК для докоррекции остаточных аметропий после удаления катаракты и имплантации ИОЛ

The aim of this study was to analyze the outcomes of residual ametropia correction by LASIK and PRK on pseudophakic eyes depending on IOL model.

Patients and methods 

57 patients (79 eyes) after cataract surgery (n = 37) or refractive lens exchange (n = 42) with IOL implantation (2012-2017) were enrolled in this prospective open study. 45.6% (n = 26) were women and 54.5% (n = 31) were men. Mean age was 50.8 ± 13.9 (19-79) years.

Preoperative eye examination included automated refractometry (Tonoref II, Nidek, Japan), visual acuity and IOP measurements, computer perimetry (HFA-750i, Zeiss, Germany), corneal topography (Pentacam, Oculus, Germany), B-scan ultrasonography and ultrasound pachymetry (US-400, Nidek, Japan), and optical coherence biometry to measure axial length,  corneal curvature, and anterior chamber depth (IOLMaster, Zeiss, Germany). Dilated fundus examination and, as needed, optical coherence tomography (RTVue-100, Optovue, USA) were performed to prevent intra- and postoperative complications.

LASIK (n = 72, 91.1%) and PRK (n = 7, 8.9%) were performed using standard protocols. Femto-assisted laser eye surgery (FS200 WaveLight, Alcon, USA) was performed on 6 eyes (7.6%). IOL power ranged from 13 D to 30 D (21.7 ± 3.4 D). In most patients (97.5%), target refraction was ±0.25 D. In two patients, target refraction was -1.5 D and -2.5 D. Follow -up was 6 to 9 (7.1 ± 1.2) months.

Among preoperative ocular comorbidities, age-related macular degeneration associated with high myopia and staphyloma (n = 2, 2.5%), central retinal degeneration (n = 12, 15.2%), early glaucoma (n = 1, 1.2%), amblyopia (n = 21, 26.6%), and Fuchs’ dystrophy (n = 2, 2.5%) were diagnosed.

Each eye was assessed separately using the following criteria: pre- and postoperative spherical and cylindrical components, keratometry readings (K1 and K2) and their axes, UCVA and best-corrected visual acuity (BCVA) at 4 meters, intra- and postoperative complications, IOL stability and if repositioning was required. In addition, indices of efficacy and safety were assessed. Index of safety is calculated as mean postoperative BCVA divided by mean preoperative BCVA. Index of efficacy is calculated as mean postoperative UCVA divided by mean preoperative BCVA. 

All patients were subdivided into groups according to IOL model. Monofocal IOLs were various models of spheric and aspheric IOLs (Alcon, USA). Multifocal IOLs were Acrysof ReStor (Alcon, USA), AT LISA tri (Carl Zeiss, Germany), and Lentis M-plus 313 (Oculentis, Germany). In group I (28 patients, 38 eyes), spheric and aspheric monofocal IOLs were implanted. In group II (29 patients, 39 eyes), multifocal IOLs were implanted. Clinical and functional characteristics of patients are listed in Table 2.

Таблица 2. Общая характеристика пациентов до операции в зависимости от вида имплантированной ИОЛ

The groups were similar in all parameters (p > 0.05) excepting cylindrical component (-1.45 ± 0.43 D in group I and -0.4 ± 0.29 D in group II, p = 0.046).

Postoperatively, all patients were prescribed with hyaluronic acid-containing eye drops (3 or 4 times daily for 6 months).

Statistical analysis was performed using Microsoft Excel 2010 and Statistica software v. 10.1  (StatSoft, USA). Arithmetic mean (M), standard deviation (SD), minimum and maximum values, and range of variation/Rv (i.e., difference between min and max) were calculated. Student’s T-test was used to compare mean values and to assess reliability of the results. Fisher’s exact test was used to compare occurrences of the parameter. Differences between the samples were considered statistically significant at p < 0.05 (95% confidence interval).

Results and discussion 

In group I, distance UCVA significantly improved from 0.31 ± 0.14 to 0.72 ± 0.22 (p < 0.05). Postoperatively, no significant changes in distance BCVA were revealed. No significant changes in spherical component were revealed as well (0.21 ± 1.47 D preoperatively and 0.23 ± 0.76 D postoperatively, p > 0.1). Target refraction ± 0.5 D was achieved in 81.6% of patients (n = 31). After 6 months, cylindrical component significantly reduced from -1.45 ± 0.43 D to -0.18 ± 0.80 D. No significant changes in keratometry readings were revealed (K1: 42.4 ± 2.7 D preoperatively and 42.1 ± 2.6 D postoperatively; K2: 44.3 ± 2.4 D preoperatively and 43.5 ± 2.1 D postoperatively); this phenomenon is accounted for by minor spherical component to be corrected. Distance UCVA better than 0.5 was achieved in 94.7% of patients (n = 36). Index of safety was 0.99. Index of efficacy was 0.87.

 In group II, distance UCVA significantly improved from 0.43 ± 0.17 to 0.80 ± 0.18 (p < 0.05). Postoperatively, no significant changes in distance BCVA were revealed. Some decrease in spherical (from 0.42 ± 1.28 D to 0.27 ± 0.51 D) and cylindrical (from -0.4 ± 0.29 D to -0.17 ± 0.58 D) components was reported after 6 months, however, the differences were insignificant (p > 0.05). Target refraction was achieved in 82.1% of patients (n = 32). No significant changes in keratometry readings were revealed postoperatively (p > 0.1). Distance UCVA better than 0.5 was achieved in 97.4% of patients (n = 38). Index of safety was 0.99. Index of efficacy was higher than in group I (0.96) being accounted for by more careful patient selection for multifocal IOLs.

Comparative analysis of the outcomes in the groups has demonstrated that laser eye surgery provides significantly greater reduction of cylindrical component in group I as compared with group II (p < 0.05) if there are differences in this parameter at baseline. Postoperatively, distance UCVA has significantly improved in both groups (p < 0.05). The rate of target refraction achievement was similar (p > 0.1).

Our findings are similar to the results of other studies. Y.Y. Fan еt al. have studied the outcomes of PRK for refractive error correction after the implantation of aspheric, multifocal, and toric IOLs. The authors have demonstrated significant improvement of distance UCVA and no changes in spherical and cylindrical components in the group of aspheric and multifocal IOLs [16]. The lack of postoperative changes in spherical component is accounted for by the correction of both myopia and hyperopia at baseline. We have demonstrated significant reduction  of cylindrical component in group I while toric IOLs were not included in the analysis. The results of other studies were similar [12, 13]. Distance UCVA better than 0.5 was achieved in 94.7% of patients in group I and 97.4% of patients in group II. These outcomes are better than in most studies [3, 10, 11, 13] and similar to the results of Kim еt al. [12], Jin еt al. [8], and Muftuoglu еt al. [14].

Conclusions 

Residual ametropia after IOL implantation can be corrected by LASIK and PRK. In monofocal IOL group, significant decrease in cylindrical component was demonstrated. Procedure efficacy in terms of target distance UCVA achievement was independent of IOL model. The rates of target refraction achievement were similar in the groups. Index of safety was 0.99 in both groups. Index of efficacy was 0.87 in group I and 0.96 in group II (more careful patient selection for multifocal IOLs accounts for the difference).

About the authors:
1Evgeny P. Gurmizov — MD, PhD, Head Doctor, ORCID iD 0000-0002-3438-3404;
2Kirill B. Pershin — MD, PhD, Professor, Medical Director, ORCID iD 0000-0003-3445-8899;
2Nadezhda F. Pashinova — MD, PhD, Head Doctor, ORCID iD 0000-0001-5973-0102;
2Alexander Yu. Tsygankov — MD, PhD, Scientific Advisor of Medical Director, ORCID iD 0000-0001-9475-3545.
1 LLC “Diagnostic Center “Vision”. 3/1, Marksistskaya str., Moscow, 109147, Russian Federation.
2 LLC “SovMedTech”. 6, Apraksin lane, St. Petersburg, 191023, Russian Federation.

Contact information: Alexander Yu. Tsygankov, e-mail: alextsygankov1986@yandex.ruFinancial Disclosure: no author has a financial or property interest in any material or method mentioned. There is no conflict of interests. Received 26.01.2019.

References
1. Neroev V.V., Malyugin B.E., Trubilin V.N. et al. Clinical and social burden of cataract treatment in Russia. Kataraktal’naya i refraktsionnaya khirurgiya. 2016;16(1): 4–14 (in Russ.).
2. Liu Y.C., Mehta J.S., Wilkins M. et al. Cataracts. The Lancet. 2017;390(10094):610–612. DOI: 10.1016/S0140-6736(17)30544-5.
3. Artola A., Ayala M.J., Claramonte P. et al. Photorefractive keratectomy for residual myopia after cataract surgery. J Cataract Refract Surg. 1999;25:1456–1460. DOI: 10.1016/s0886-3350(99)00233-3.
4. Raman S., Redmond R. Reasons for secondary surgical intervention after phacoemulsification with posterior chamber lens implantation. J Cataract Refract Surg. 2003;29:513–517. DOI: 10.1016/s0886-3350(02)01637-1.
5. Pershin K.B., Pashinova N.F., Tsygankov A.Yu. et al. Biometry in lOL power calculations as a factor of successive cataract surgery. Kataraktal’naya i refraktsionnaya khirurgiya. 2016;16(2):15–22 (in Russ.).
6. Pershin K.B., Pashinova N.F., Tsygankov A.Yu. et al. Management of residual refractive error after cataract phacoemulsification. Part 1. Keratorefractive approaches. Oftal’mologiya. 2017;14(1):18–26 (in Russ.). DOI: 10.18008/1816-5095-2017-1-18-26.
7. Pershin K.B., Pashinova N.F., Tsygankov A.Yu., et al. Management of residual refractive error after cataract phacoemulsification. Part 2. Intraocular approaches. Oftal’mologiya. 2017;14(2):106–112 (in Russ.). DOI: 10.18008/1816-5095-2017-2-106-112.
8. Jin G.J., Merkley K.H., Crandall A.S., Jones Y.J. Laser in situ keratomileusis versus lens-based surgery for correcting residual refractive error after cataract surgery. J Cataract Refract Surg. 2008;34:562–569. DOI: 10.1016/j.jcrs.2007.11.040.
9. Fernández-Buenaga R., Alió J.L., Pérez Ardoy A.L. et al. Resolving refractive error after cataract surgery: IOL exchange, piggyback lens, or LASIK. J Refract Surg. 2013;29:676–683. DOI: 10.3928/1081597x-20130826-01.
10. Patterson A., Kaye S.B., O’Donnell N.P. Comprehensive method of analyzing the results of photoastigmatic refractive keratectomy for the treatment of post-cataract myopic anisometropia. J Cataract Refract Surg. 2000;26:229–236. DOI: 10.1016/s0886-3350(99)00362-4.
11. Ayala M.J., Pérez-Santonja J.J., Artola A. et al. Laser in situ keratomileusis to correct residual myopia after cataract surgery. J Refract Surg. 2001;17:12–16.
12. Kim P., Briganti E.M., Sutton G.L. et al. Laser in situ keratomileusis for refractive error after cataract surgery. J Cataract Refract Surg. 2005;31:979–986. DOI: 10.1016/j.jcrs.2004.08.054.
13. Kuo I.C, O’Brien T.P., Broman A.T. et al. Excimer laser surgery for correction of ametropia after cataract surgery. J Cataract Refract Surg. 2005;31:2104–2110. DOI: 10.1016/j.jcrs.2005.08.023.
14. Muftuoglu O., Prasher P., Chu C. et al. Laser in situ keratomileusis for residual refractive errors after apodized diffractive multifocal intraocular lens implantation. J Cataract Refract Surg. 2009;35:1063–1071. DOI: 10.1016/j.jcrs.2009.01.028.
15. Kamiya K., Umeda K., Ando W. et al. Clinical outcomes of photoastigmatic refractive keratectomy for the correction of residual refractive errors following cataract surgery. J Refract Surg. 2011;27:826–831. DOI: 10.3928/1081597X-20110623-02.
16. Fan Y.Y., Sun C.C., Chen H.C., Ma D.H. Photorefractive keratectomy for correcting residual refractive error following cataract surgery with premium intraocular lens implantation. Taiwan J Ophthalmol. 2018;8:149–158. DOI: 10.4103/tjo.tjo_51_18.
17. Pop M., Payette Y., Amyot M. Clear lens extraction with intraocular lens followed by photorefractive keratectomy or laser in situ keratomileusis. Ophthalmology. 2001;108:104–111. DOI: 10.1016/s0161-6420(00)00451-6.
18. Leccisotti A. Secondary procedures after presbyopic lens exchange. J Cataract Refract Surg. 2004;30:1461–1465. DOI: 10.1016/j.jcrs.2003.11.056.
19. Macsai M.S., Fontes B.M. Refractive enhancement following presbyopia-correcting intraocular lens implantation. Curr Opin Ophthalmol. 2008;19:18–21. DOI: 10.1097/icu.0b013e3282f14d9f.
20. Alfonso J.F., Fernández-Vega L., Montés-Micó R., Valcárcel B. Femtosecond laser for residual refractive error correction after refractive lens exchange with multifocal intraocular lens implantation. Am J Ophthalmol. 2008;146:244–250. DOI: 10.1016/j.ajo.2008.03.022.
21. Sánchez-Galeana C.A., Smith R.J., Rodriguez X. et al. Laser in situ keratomileusis and photorefractive keratectomy for residual refractive error after phakic intraocular lens implantation. J Refract Surg. 2001;17:299–304.
22. Pershin K.B., Pashinova N.F., Gurmizov E.P., Tsygankov A.Yu. Results of implantation of additional pseudophakic toric sulcus intraocular lens for the correction of residual ametropia after phacoemulsification of cataract. Meditsinskiy al’manakh. 2018;2(53):68–71 (in Russ.).



License Creative Commons
This work is licensed under a Creative Commons «Attribution» 4.0 License.
Previous article
Next article

Register now and get access to useful services:
  • Загрузка полнотекстовых версий журналов (PDF)
  • Медицинские калькуляторы
  • Список избранных статей по Вашей специальности
  • Видеоконференции и многое другое

С нами уже 50 000 врачей из различных областей.
Присоединяйтесь!

Fatal error: Call to undefined function get_registration_form_description_popup() in /home/c/cb72209/clinopht.com/public_html/en/include/reg_form.php on line 89